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Image pyramids provide useful information in determining structural response at low
cost using commercially available cameras. The current effort applies previous work on the
complex steerable pyramid to analyze and identify imperceptible linear motions in video.
Instead of implicitly computing motion spectra through phase analysis of the complex
steerable pyramid and magnifying the associated motions, instead present a visual tech-
nique and the necessary software to display the phase changes of high frequency signals
within video. The present technique quickly identifies regions of largest motion within a
video with a single phase visualization and without the artifacts of motion magnification,
but requires use of the computationally intensive Fourier transform. While Riesz pyra-
mids present an alternative to the computationally intensive complex steerable pyramid
for motion magnification, the Riesz formulation contains significant noise, and motion mag-
nification still presents large amounts of data that cannot be quickly assessed by the human
eye. Thus, user-friendly software is presented for quickly identifying structural response
through optical flow and phase visualization in both Python and MATLAB.

I. Introduction

Just as time-domain signals are commonly represented as a sum of various frequency sinusoids, the spatial
signals within an image can be represented as a sum of high and low frequency sinusoids. Image pyramids1, 2

are a multiscale representation that recursively separates these high and low frequency components of an
image, creating a bank of frequency bands that more clearly identify underlying patterns within an image.
The high frequency signal bands isolate rapid changes in signals that correspond to sharp edges within in
image, while the low frequency bands contains the underlying intensities of the image, similar to a DC offset
of an electrical signal.

In a standard Gaussian pyramid, the image is recursively blurred and sub-sampled3 to separate out the
signal components as shown in Fig. 1. The first level, or base level, contains all frequency components, while
each subsequent level removes the highest octave bandwidth of frequencies. An octave bandwidth is defined
such that the highest frequency in the band is twice that of the lowest: in such a manner, each level of a
Gaussian pyramid low pass filters the previous pyramid level. The last and smallest level of the pyramid
contains the low pass residual of the image. As each level is sub-sampled, some of the original information
within the image is lost, i.e., these levels cannot be recombined perfectly to recreate the original image.
Blurring before subsampling each level reduces the amount of information lost, but does not completely
eliminate this loss, nor does it prevent against aliasing. The complex steerable pyramid is one method to
reduce signal aliasing and pyramid reconstruction errors.4 The CSP is similar in structure to Gaussian
pyramid, but requires a domain shift from spatial to frequency before each pyramid level is created.5

An alternative to the complex steerable pyramid is the Riesz pyramid. By applying an approximate Riesz
transform both horizontally and vertically to a Laplacian pyramid (difference between Gaussian pyramid and
original image), a quaternion representation of the of frequency content is developed. The Riesz pyramid pre-
sented by Wadhwa et al.6 possesses a better inversion than the complex steerable pyramid and significantly
reduces computational time in exchange for small sacrifices in the accuracy of pyramid level construction.
However, the Riesz pyramid uses a finite difference filter as opposed to the Fourier transform of the complex
steerable pyramid, creating a phase formulation that is only locally significant and contains more noise. The
finite difference filter is much faster to compute than the Fourier transform, as demonstrated by Wadhwa et
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Figure 1: Gaussian Image Pyramid

al., making the Riesz pyramid better suited for live motion detection, while the complex steerable pyramid
is better suited for post-processing.

II. Phase Visualization through Optical Flow and Image Pyramids

A. Theory

To create the steerable pyramid, an image is moved to the Fourier domain to prevent aliasing. A set
of Fourier domain filters are then created that spatially filter the transform of the image, using a Gabor
wavelet windowed by a Gaussian.4 The Gabor operator seeks the edges of the image, where spatial signals
of varying frequency are most prevalent, while the Gaussian attenuates signals outside the current frequency
band of interest, i.e., the CSP is a bandpass pyramid. Each filter is multiplied into the transform of each
image, and the product is then moved back to the spatial domain to produce a pyramid level. This process
produces a complex representation of each pyramid subband. The phase of this complex representation can
be used to identify how a particular frequency signal changes across an image, and it can be used to implicitly
calculate motion. Furthermore, the complex steerable pyramid is oriented: each Gabor filter can be steered
to find edges along different directions. Examples of oriented Gabor filters are shown in Fig. 2.

(a) X oriented filter. (b) Y oriented filter

Figure 2: Highest frequency Gabor filters for a 4 orientation complex steerable pyramid (filter shown in
frequency domain).

For a video containing small motions that has been decomposed as series of images using the complex
steerable pyramid, the phase of each complex pyramid level contains the motion spectra between image
frames. This phase is capable of capturing motion that moves less than a pixel, and therefore serves as a
better indicator of motion than the original pixel intensity.4 The motion of an object within an image can
be magnified by these motions by phase shifting each band of the complex steerable pyramid. Wadhwa et al.
proposes to first remove the DC offset of the phase at each pixel, and then temporally filter the phases. The
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phases are then subjected to an amplitude weighted Gaussian blur, such that only the pixels that correspond
strongly to the each spatial filter are phase shifted. The filtered and denoised phases are then scaled by a
magnification factor α , to produce a filtered, denoised, and magnified phase of αδ′(t). These phases are then
added back into the pyramid subband, such that the new pyramid level possesses a phase of δ(t) + αδ′(t),
while the original signal amplitude is preserved. The pyramid is then collapsed to magnify the previously
isolated motion signals. Unlike Wadhwa et al., we seek not to collapse the pyramids to produce motion
magnification, but rather to to provide a direct phase visualization method that more readily reveals where
small motions are occurring within a camera’s field of view. The magnified sequences of these motions may
be distorted as the impulse response of the pyramid is surpassed, as presented in Fig. 3. Additionally, we
seek to produce a visual where the location of motion within an image sequence can be identified from a
single visual.

(a) Original Circle with blurred edges. (b) Magnified difference between (a) and a
copy shifted left by one pixel (25x). Note
distortion of edges as the the impulse re-
sponse of the image pyramid is surpassed.

(c) Visualization of phase difference be-
tween (a) and a copy shifted left by one
pixel. Blue indicates no phase difference,
red indicates large phase difference (and
the regions of largest motions).

Figure 3: Phase shifting magnification versus direct phase difference observation.

Methods such as optical flow, shown in a simple example in Fig. 4, provide similar information as the
complex steerable pyramid. However, the CSP posses several advantages over optical flow. Fourier filters

(a) (b) (c) Optical flow between (a) and (b)

Figure 4: An example of optical flow using brick toys. The flow highlights the small motion in the toy
between frames.

are faster than iterative convolution, and require less multiplies per pixel since convolution of a single filter
in the spatial domain can be represented as the multiplication of two matrices in the Fourier domain, as
per Convolution Theorem.4 The CSP is robust to noise and presents unique opportunities to remove noise
through an amplitude weighted phase blur within each pyramid level. Finally, the complex steerable pyramid
can compute local motions within an image without the explicit calculations of optical flow, and it provides
a method for amplifying these motions for visual purposes.

The Riesz pyramid is developed by applying an approximate Riesz transform both horizontally and
vertically to a Laplacian pyramid to get a quaternion representation of the of frequency content. A spherical

3 of 10

American Institute of Aeronautics and Astronautics



coordinate system can be used to represent the frequency content, where the amplitude is the frequency
response, the angle θ is the dominant orientation at each pixel, and the phase φ is the local signal phase
for the current pyramid level . In contrast, the complex steerable pyramid only employs a polar coordinate
system of amplitude and phase. As the vector representation of the Riesz pyramid contains the local
orientation at each pixel, each subband can be steered to the dominant orientation using a cosine rotation
matrix, eliminating the need to sample each frequency band in multiple directions.6 Additionally, the Riesz
pyramid presented by Wadhwa et al. significantly reduces computational time in exchange for small sacrifices
in the accuracy of pyramid level construction, thus making the Riesz pyramid better for live implementation
of motion detection while CPS is better for post-processing video data.

Since both the complex steerable pyramid and the Riesz pyramid are dependent on signals over time,
they are both impacted negatively by the introduction of lossy video compression. Compression codecs that
compress videos over time introduce artifacts in the phase of both pyramids, thereby reducing the ability of
the pyramids to implicitly detect motion. The compression can also introduce false signals within the power
spectral density, leading to difficulties in automatically detecting modal frequencies.

B. Implementation

To first extract modal frequencies of an object vibrating in a video, we use a MATLAB mex file of the
C++ optical flow code developed by Liu.7 A program to calculate power spectral density (PSD) and display
the resulting frequency responses was written using the MATLAB discrete Fourier transform functions.
The PSD for x motion and y motion are then used to specify a series of high and low cutoff frequencies.
These cutoffs are then fed to an adjusted motion magnification program, where the user can specify the
Complex Steerable Pyramid variables such as number of sub-octave bands, number of orientations, phase
blurring radius for the amplitude weighted blur, magnification factor, and preferred temporal filter for the
magnification process. The optical flow, frequency extraction, and motion magnification are all wrapped in a
single MATLAB GUI, which outputs several files containing frequency information, optical flow results, and
magnified videos. Within the optical flow and motion magnification algorithms, however, there are limits
imposed on processing based on available computer memory.

A second routine using Riesz pyramids for motion magnification was written in MATLAB, using the
Laplacian-like pyramid developed by Wadhwa et al.8 The MATLAB implementation first computes the
power spectral density of the video based on the quaternionic phase, which is then presented to the user for
cutoff selection. The phase information is then transformed by the user’s choice of temporal filter (bandpass
recursive Butterworth or non recursive FIR) and subsequently blurred and magnified. Both the Riesz and
CSP implementation of motion magnification algorithms output several MAT files containing the original and
Fourier transform of the respective pyramid’s phases. A third routine allows the users to view the Fourier
transform of these phases, which allows the user to more easily identify where motions of a particular
frequency range are occurring within a video, as compared to viewing the phase changes over several frames
of a video. The user can additionally view the Fourier transform of the optical flow for an alternate view of
motion within a video at particular frequencies.

A second set of routines written implements the Riesz pyramid formulation in Python to eliminate the
need of MATLAB licenses and improve performance. A quaternion image class allows a user to easily imple-
ment the quaternion transformation of each image subband. Overloaded operators increases the readability
of the program, where operations such as multiplication and exponentiation are defined by the algebra of
Hamilton quaternions. An overlayed script allows the user to adjust the magnification, temporal cutoffs,
visualization inputs, and other parameters. It employs a second order bandpass Butterworth recursive filter
applied forwards then backwards to magnify the desired frequency components.

III. Applications

A. Fourier Transform Visualization of Optical Flow

To extract modal shapes and a cleaner power spectral density, we first run each video through an optical flow
algorithm developed by Liu.7 For each set of consecutive frames, optical flow produces a two dimensional
vector for each pixel, representing the calculated horizontal and vertical motions between the current and
previous frame. If the original video was of size M xN xF (grayscale image), where M is the number of
rows, N is the number of columns, F the number of frames, and p the number of pixels in each frame, then
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each vector component of the optical flow output is of dimensions M xN x (F − 1). To produce a visual
corresponding to the frequency of motions, we transform both the horizontal and vertical vector components,
u and v, respectively, along the time dimension of size F − 1. The power spectral density is then computed
using the following formula, where Vx and Vy are the Fourier transforms of the computed horizontal and
vertical motions, respectively.

PSDx = 1
Fs ∗ (F − 1) ∗M ∗N

p∑
k=1
||Vx||2 , PSDy = 1

Fs ∗ (F − 1) ∗M ∗N

p∑
k=1
||Vy||2 (1)

Using this definition, we then define an event threshold for modal frequencies, determined experimentally.
For each frequency peak selected, we transform the quantities Vx and Vy into a color space determined by
signal amplitude and phase. The phase of each pixel determines its color, and the magnitude of each pixel’s
frequency response, relative to the maximum in each frame, determines the saturation of each pixel. If there
is little to no frequency response at a particular frequency for a particular pixel, then the pixel will be black.
Fig. 5 presents the color wheel used in the visualization.

Figure 5: The color wheel used to shift phase and frequency response to a visual interpretation. A visual-
ization containing two colors separated by 180° on the wheel indicate motion that is 180° out of phase.

1.

To demonstrate the mode shape application of Optical Flow, the color space in Fig. 5 was applied to the
results of a cantilever beam in free vibration. The beam was designed to possess three bending modes
beneath the Nyquist frequency of the camera (15Hz). The solutions to the eigenvalue problem of free
vibration are readily understood and documented in the literature.9 The shapes of the first three bending
modes of a cantilever beam are shown in Fig. 5. The solutions to free vibration produce a first bending mode
characterized by uniform swaying motion, while the second bending mode contains a static (non-moving)
node at approximately three quarters of the beam length which separates out of phase motion on either side
of the node. The third bending mode contains two static nodes, such that the motion at opposite ends of a
cantilevered beam are phase, and the motion of the middle section is 180° out of phase with the other two
sections of the beam.
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Figure 6: Eigenvalue problem results for free vibration of a cantilevered beam. An intersection with the
horizontal axis indicates a node. The amplitude of deflection has been normalized with respect to the free
end of the beam.

Vibration was induced in the test beam through a single tap of an impact hammer near the midpoint of
the beam. From the power spectral density plot presented in Fig. 6, three peaks were selected as the first
three bending modes, at frequencies of 1.02Hz, 5.34Hz, and 14.4Hz. Fig. 7(b) visualizes the shape of the
first bending mode, where a single pink phase indicates uniform lateral motion along the length of the beam,
which is consistent with the free vibration theory for the first bending mode. Fig. 7(c) shows two phase
groupings separated by 180º (red at 0º, cyan at 180º on the color wheel in Fig. 4), indicating motions in
opposite directions at 5.34Hz, as expected for the second bending mode of a beam. Fig. 7(d) shows motion
in the same direction at the top and bottom of the beam, but the middle section is approximately 180º out
of phase relative to the end sections of the beam, which is again consistent with the known modes of a beam.

Figure 7: Power spectral density for a freely vibrating cantilever beam
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(a) First frame
of bending
beam video
(hanging
vertically).

(b) Frequency
Response at
1.02Hz

(c) Frequency
Response at
5.34Hz

(d) Frequency
Response at
14.45Hz

Figure 8: Example optical flow visualization for bending beam.

The test data from the impact hammer was used to determine the accuracy of optical flow in identify-
ing the frequencies of the first three bending modes of the test beam. The impact hammer and a single
accelerometer placed in the middle of the beam were used to develop the test frequency response functions
(FRFs). It was found that the accelerometer data matched closely with the frequencies derived from optical
flow. Since the accelerometer was used to measure the same system observed by the camera, the results of
the frequency response function were accepted as truth for the vibration modes of the beam. The frequencies
of the first three bending modes, as found through accelerometer data and optical flow, are presented in
Table 1. The error values in the right column of the table are comparing the accelerometer data with the
optical flow data, where the optical flow data is used as the “truth” value. After inspection of the two power
frequency spikes at 4.9Hz and and 13.4Hz in the power spectral density plot, it was determined that the
beam had coupled with the mounting structure, changing the nature of the bending modes.

Test Data (Hz) Opt. Flow Data (Hz) % Error of Opt Flow
1st Mode 1.074 1.015 -5.5%
2nd Mode 5.371 5.324 -0.9%
3rd Mode 14.355 14.455 0.7%

Table 1: Bending modes for a simple cantilevered beam measured with an accelerometer and optical flow.
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B. Phase Visualizations of Shell Buckling

Motion magnification requires acute knowledge of the frequency aspect of structural response to properly
magnify individual modes. Despite recent computational advantages, the fast Fourier transform cannot be
implemented fast enough to provide this information during a live implementation. Therefore, we seek to
directly visualize the phase changes of the complex steerable pyramid, instead of isolating phase changes
of a particular frequency. We specifically inspect the changes occurring in the high frequency bands of the
complex steerable pyramid, which are more sensitive to changes in lighting due to surface deflection of an
imaged object. The application presented here is based on the Shell Buckling Knockdown Factor testing of
the 8-ft-diameter seamless cylinder test article, an aluminum orthogrid barrel with no weld lines built at
the NASA Marshall Space Flight Center. The intent of testing was to demonstrate the potential benefits
of building cylindrical structures with no weld lands using the flow-formed manufacturing process.10 The
phase visualization results in Fig. 9 were produced during the critical loading sequence of the test article.

During standard shell loading, little to no motion occurs between video frames, thereby reducing the
ability of motion magnification to assist in motion visualization. However, as the shell approaches material
or structural limits, fatigue and buckling produce small linear motions that are invisible to the human eye.
Direct phase visualization can be used in this case to identify the origination of buckling and characterize the
shapes of buckling behavior. Using the first subband of high pass filters presented in the complex steerable
filter, the phase of the Fourier transform of each frame of a video is spatially filtered. The spatially filtered
phase of the first frame is then subtracted from each subsequent frame to remove any DC offset from the
signal, leaving only the linear change in motion signal. As the structure deforms, the linear motion will
produce larger phase offsets from the first (reference) frame, which are readily visible to the human eye when
a normalized color map is applied to the phases and the results weighted by spatial frequency. Fig. 9 (left)
shows several frames of a rigid aluminum shell being continuously loaded near the critical load; the human
eye can arguably detect no difference between the frames. However, the phase of the high frequency content
of the complex steerable pyramid for each image reveal buckling pockets as the load increases, as shown in
Fig. 9 (center).

To improve performance, a Riesz implementation of phase visualization was developed. While this method
is useful in increasing computational performance during motion magnification, it requires an adjusted
visualization method that varies based on the subject of visualization and tends to be noisier than the
complex steerable pyramid. Unlike the Fourier transform used in the complex steerable pyramid formulation,
the approximate Riesz transform developed by Wadhwa produces a locally significant phase since it considers
only the surrounding 3 by 3 group of pixels (depending on Riesz transform tap used). In contrast, the complex
steerable pyramid produces a globally significant phase such that the phase of each pixels is sensitive to
changes in intensity anywhere in the image, and not just within a local region of pixels. As such, the
visualization method for Riesz pyramid phase is affected by whether the motion within a video is localized
to certain regions, or spread across the entirety of the frame. Fig. 9 compares the results of the complex
steerable pyramid to the Riesz formulation for shell buckling.

IV. Conclusions

Phase information of a complex steerable pyramid presents a unique method for motion detection and
magnification. The phase of the high frequency spatial filter of the complex steerable pyramid is especially
sensitive to linear motion changes between image frames, and therefore possesses potential for use an indicator
of structural fatigue. However, computation of the Fourier transform used within the complex steerable
pyramid is too slow for a live implementation. Additionally, for post processing methods, the complex
steerable pyramid phase contains too much noise for modal frequency and shape identification as compared
to optical flow, thereby requiring both methods, and additional processing time, to identify and magnify
various vibrations within a video. While the Riesz pyramid presents a possible alternative that improves on
the speed of the complex steerable pyramid, the current finite difference filter used in its formulation produces
a localized phase that is not as sensitive as the complex steerable pyramid to to image intensity changes.
Future work aims to reduce the noise in phase visualizations, automatically detect modal frequencies in real
time implementations, and create automatic thresholds for buckling prediction based on the phase differences
of a Riesz pyramid. Additionally, we seek to derive methods to reduce artifacts in motion magnifications
due to video compression.
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(a) The shell approximately 5 seconds before collapse, with little motion occurring. (Bright spots at edges are not
motion, but rather, edges between the barrel and the poles).

(b) The shell approximately 2.5 seconds before collapse.

(c) The shell milliseconds before collapse. For center image, red patterns (middle of shell) indicate pockets where
buckling occurs, and red lines (top of shell) indicate the load applicator suddenly shifting downwards.

Figure 9: Frames pulled from high speed video of a shell buckling procedure. Red indicates large local phase
differences between current frame and reference frame, blue indicates little to no difference. Left: original
frame; center: CSP high frequency phase; right: Riesz pyramid high frequency phase.
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